
J. Fluid Mech. (2010), vol. 661, pp. 178–205. c© Cambridge University Press 2010

doi:10.1017/S0022112010002892

Streamwise vortices in shear flows: harbingers of
transition and the skeleton of coherent structures

PHILIP HALL1† AND SPENCER SHERWIN2

1Institute of Mathematical Sciences, Imperial College London, London SW7 2AZ, UK
2Department of Aeronautics, Imperial College London, London SW7 2AZ, UK

(Received 13 August 2009; revised 17 May 2010; accepted 18 May 2010;

first published online 16 August 2010)

The relationship between asymptotic descriptions of vortex–wave interactions and
more recent work on ‘exact coherent structures’ is investigated. In recent years
immense interest has been focused on so-called self-sustained processes in turbulent
shear flows where the importance of waves interacting with streamwise vortex flows
has been elucidated in a number of papers. In this paper, it is shown that the so-called
‘lower branch’ state which has been shown to play a crucial role in these self-sustained
processes is a finite Reynolds number analogue of a Rayleigh vortex–wave interaction
with scales appropriately modified from those for external flows to Couette flow, the
flow of interest here. Remarkable agreement between the asymptotic theory and
numerical solutions of the Navier–Stokes equations is found even down to relatively
small Reynolds numbers, thereby suggesting the possible importance of vortex–wave
interaction theory in turbulent shear flows. The relevance of the work to more general
shear flows is also discussed.
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1. Introduction
Our concern is with the relationship between stationary streamwise vortex structures

and wave systems in shear flows. The secondary instability of streamwise vortex flows
is now well-understood and the agreement found between theory and experiment for
vortices is arguably one of the successes of boundary-layer stability theory. It has
been known since Davey, DiPrima & Stuart (1968) that a stationary Taylor vortex
at finite amplitude suffers a secondary bifurcation to wavy vortex flows. Elsewhere,
notably in discussions of shear-layer instabilities, the wavy vortex is referred to as the
sinuous mode of instability, and often a second mode called the varicose mode can
exist. The varicose mode has the primary and secondary instability in phase in the
spanwise direction so that cell boundaries are no longer wavy.

In the context of the Görtler vortex problem, Hall & Horseman (1991) found
that both modes are possible in external flows over curved walls but that in the
configuration appropriate to the experiments of Swearingen & Blackwelder (1987)
the sinuous mode dominates. Yu & Liu (1991) carried out a related calculation
where the viscous terms in the instability equations were arbitrarily retained, their
conclusions were broadly in agreement with Hall & Horseman (1991). Li & Malik
(1995) subsequently gave a much more exhaustive discussion of the different secondary
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instability routes and also showed that in some cases the varicose mode can be unstable
and also found that subharmonic modes can be unstable.

There are many other flows which support stationary vortex structures. In some
circumstances, the vortices are produced directly by a centrifugal or buoyancy
instability, see for example Hall & Morris (1992), or as a result of imperfections,
e.g. wall roughness, though in the absence of a secondary instability these vortices
would ultimately decay to zero. Our work is relevant to all of these situations but
for definiteness we will concentrate on a much simpler problem namely Couette flow
between rigid walls.

In the absence of curvature or heating or any other direct mechanism to produce
streamwise vortices, the unperturbed flow is often stable to inviscid waves. However,
one can imagine a situation where a wave is sufficiently large to produce a driving
mechanism for streamwise vortices which themselves are unstable to waves. Such a
self-sustaining configuration was the subject of several papers some years ago; see
for example Hall & Smith (1988, 1989, 1990, 1991), Bassom & Hall (1989), Bennett,
Hall & Smith (1991), Blackaby (1991) and Walton & Smith (1992). In these papers
the wave system was described asymptotically and was either a Tollmien–Schlichting
or an inviscid wave. For obvious reasons this type of interaction was referred to as a
vortex–wave interaction.

It is convenient to introduce some more recent terminology for streamwise vortex
flows. Consider a flow (u(y), 0, 0) which is modified by some means to produce a
velocity field u(y, z) which is periodic in the spanwise z direction. We refer to the flow
associated with the y–z velocity components as a streamwise ‘roll’ and the downstream
velocity component u corresponds to what is called a ‘streak’. The combination of
the streamwise rolls and downstream streaks then make a streamwise vortex. An
examination of the Navier–Stokes equations at large values of the Reynolds number
R shows that an exact Navier–Stokes solution is possible with the rolls of size R−1

and the streaks O(1). This scaling can be traced back to the work of for example
Taylor (1923) on small gap Taylor vortices. If there is curvature associated with the
flow then the y momentum equation is driven by a centrifugal term proportional to
u2 whilst the streak is driven directly by the rolls through nonlinearity.

The key observation made in the Hall–Smith theory was that the required forcing
of the vortex system could be achieved by tiny waves because wave interactions
preferentially drive the rolls which themselves drive the streaks. In fact, both inviscid
and viscous waves can drive the latter rolls which are of size R−1 so that the flow u,
which we refer to as the streamwise vortex, can be driven by small waves. The vortex–
wave interaction theories therefore describe nonlinear states where an O(1) streak is
driven by a wave field that satisfies a linear eigenvalue partial differential equation
with coefficients which depend on the streak which is itself driven by a roll forced by
the wave field. In spatially developing or temporally varying mean states, the wave
field adjusts locally or instantaneously so as to remain neutral during the evolution
process. The theory failed however to shed a great deal of light on the transition
process where small linear waves amplify through various stages until they become
highly nonlinear, though some work on the relevance of the theory to the initiation
process was given by Hall (1994) and Brown et al. (1993). What we demonstrate
in this paper is that the theory is in all likelihood much more directly relevant to
turbulent flows and indeed that the theory gives remarkably good agreement with
recent large direct numerical computations of coherent states in shear flows.

Some years before the work of Hall & Smith (1991), a mechanism somewhat
related to vortex–wave interaction theory had been postulated by Benney (1984).
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However, in that theory the Reynolds number was O(1) and there was no rational
way to asymptotically deduce an interaction mechanism. Essentially, Benney wrote
down reduced forms of the Navier–Stokes equations which could be used as a
starting process to derive the vortex–wave interaction theories by using the limit
of large Reynolds numbers. It was also not recognized that the interaction can
only take place if the wave system remains neutral during the interaction. Apart
from Hall & Smith (1991), the waves were taken to be Tollmien–Schlichting waves
induced by viscosity, and a generic property was found to be that their forcing of
the vortex occurs in a viscous boundary layer with the asymptotic structure of the
wave described by triple-deck theory. Later Chapman (2002) considered subcritical
instabilities of channel flows by looking at the linear instability of uniform flows
perturbed by spanwise periodic structures. Chapman isolated the size of spanwise
periodic perturbation in the y, z planes which could destabilize Couette flow and
found it to be O(R−1). This is entirely consistent with the vortex–wave interaction
theories which have the fundamental structure of an O(1) streaky flow driven by an
O(R−1) roll. However, in Chapman’s work the instability of the streaky flow is so
small that it has no back effect on the rolls and the spanwise periodic flow leading
to instability is imposed on the flow. Thus, Chapman’s work only overlaps with the
vortex–wave interaction theory work in the isolation of the size of rolls which drive
a streaky flow which can be unstable.

Most of the vortex–wave interaction work has been in the context of viscous
waves but in Hall & Smith (1991) the interaction equations were also given for a flow
supporting inviscid waves of the type found by Hall & Horseman (1991). It was found
that the forcing takes place in the critical layer associated with the wave and drives
a discontinuity in the roll shear and pressure. No solutions of the full interaction
system found by Hall & Smith (1991) have yet been published. The solution of these
equations is the primary concern of this paper.

More recently still there has been immense interest in nonlinear processes in shear
flows and their relationship with coherent structures which occur in turbulent flows.
These processes have come to be known as ‘self-sustained processes’ and are typified
by wave systems driving rolls which themselves drive streaks which are themselves
neutrally stable to the wave. This process sounds very much like the one identified in
the vortex–wave interaction work. This apparent connection between self-sustained
processes and vortex–wave interaction theories has not been explored. Here we will
show the relationship between the two approaches in the context of channel flows
but there exists many closely related results for pipe flow (see for example Hof et al.
2004; Fitzgerald 2004; Wedin & Kerswell 2004; Kerswell & Tutty 2007; Viswanath
2007; Faisst & Eckhardt 2003).

In channel flows, Waleffe and co-workers, guided by the early ideas of Benney and
co-workers, in a number of papers looked into the possibility that the Navier–Stokes
equations might support wave systems occurring as instabilities of streamwise vortex
flows with the waves sufficiently large to drive the vortex flows (see for example
Waleffe 1995, 1997, 1998, 2001, 2003; Wang, Gibson & Waleffe 2007). The approach
used was to find fully nonlinear solutions of the Navier–Stokes equations using
fictitious body forces to find equilibrium states and then continue them when the
forcing was switched off. Earlier, Nagata (1990) had done related calculations with
the nonlinear flow initially driven by centrifugal effects and then connected them to
a finite amplitude state as the Taylor number was decreased to zero. Much greater
detail of these structures was revealed subsequently in for example the paper by
Clever & Busse (1997).
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Of particular relevance to this paper, and indeed the major motivation for it, is the
work reported in a numerical investigation of Couette flow by Wang et al. (2007). That
paper was concerned with self-sustained interactions in Couette flow over a range of
Reynolds numbers. The equilibrium solutions found were computed by first driving
a vortex flow using a fictitious body force in the spanwise momentum equation. In
the calculations, finite amplitude solutions were found above some Reynolds numbers
with the solutions then connecting to what the authors referred to as upper and lower
branch states. (Note that this choice of label, though understandable since the upper
and lower branches correspond to flows with higher and lower drags respectively, is
different from the usual convention of shear flow instability theory where the lower
and upper branches of the neutral curve correspond to viscous and inviscid modes,
respectively, whereas we will show that the lower branch modes are in fact inviscid.)
Particular interest was given to the lower branch states and the authors found that
the calculations could be resolved even at high Reynolds numbers with minimal
Fourier modes in the streamwise direction. These equilibrium states were found by
Newton iteration and not by marching the equations of motion forward in time.
Numerically, they observed that the vortex was forced by the wave in a critical layer
where the wave speed coincided with the downstream velocity, in fact that velocity
was zero so the waves were stationary. The lower branch states discussed by Wang
et al. (2007) corresponded to waves which were in fact stationary which happens
because of the symmetries of Couette flow driven by boundaries moving in equal and
opposite directions.

The lower branch states have been shown in a number of papers to play a
crucial role in determining whether a flow is going to become turbulent or return
to the laminar state. For example, following the suggestion made by Waleffe (2003),
Schneider et al. (2008) talk about the ‘edge’ as being the surface separating initial
states which develop into turbulence and those which relaminarize and they show
conclusively that the edge can be associated directly with the lower branch states.
Obviously, an asymptotic theory such as ours which can reveal the structure of the
edge will be invaluable to those undertaking large-scale computations and indeed
open the door to possible turbulent flow manipulations by a suitable modification of
the possible wavelengths and stability properties of the streaks.

The above picture of the lower branch state associated with Couette flow is
exactly the scenario of the Hall & Smith (1991) theory, though the latter was of
course formulated in the context of boundary layers. In addition, Wang et al. (2007)
suggested from their numerical results that the wave amplitude of the spanwise
velocity component should scale like R−0.9 whilst the streak and rolls scale like R0

and R−1, respectively. We will show that our approach gives excellent agreement with
the numerical work of Wang et al. (2007) over a wide range of Reynolds numbers.
In computational terms, we see that the vortex–wave interaction theory reduces the
computational problem from a three-dimensional unsteady Navier–Stokes calculation
to a two-dimensional steady Navier–Stokes problem at unit Reynolds number coupled
to a linear wave evolution equation.

The original formulation of the vortex–wave interaction equations given by Hall &
Smith (1991) was derived in Cartesian coordinates and will be modified here to give
the interaction equations for Couette flow. We note that the equations in Cartesian
form appear to break down when the critical layer is locally vertical. Though that
situation does not apply to Couette flow, it certainly would be the case for circular
Poiseuille flow. In what follows we have formulated a relatively straightforward
and accessible derivation of the interaction equations for arbitrary geometry which
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overcomes this difficulty and indeed highlights the key physical processes acting in
vortex–wave interactions/self-sustained processes.

Our alternative approach uses ideas from steady streaming theory; see for example
Stuart (1966) and Riley (1967). The key idea is that an inviscid wave propagating
on a streaky flow has a critical layer of depth R−1/3 centred on the position
where the wave speed and streak velocity coincide. Since the streaky flow varies
in the z direction then the critical layer position in the spanwise direction varies. As
the critical layer is approached, the wave amplitude increases so the maximum wave
motion takes place in this layer. Moreover, in this layer the wave velocity components
in the plane perpendicular to the streaky flow are bigger than the roll velocity. The
time periodic motion in the layer generates a mean motion independent of time and
the downstream coordinate in the same way as oscillatory boundary layers generate
steady streaming. Unlike the latter case the wave stresses cause a jump in the roll
shear and pressure across the layer, thereby driving the rolls. In fact, the jump in
roll pressure is induced to balance a centripetal acceleration of the wave due to the
streaming motion whilst the jump in the roll shear is induced by the mean stresses
parallel to the critical layer. Thus, the physical process at the heart of vortex–wave
interactions, or indeed self-sustained processes, is a steady streaming effect leading to
a jump in the roll shear and local centrifugal pressure gradient of the rolls.

In the next section we present a relatively straightforward alternative derivation of
the interaction equations for Couette or indeed any flow in a channel of arbitrary
cross-section. As part of the derivation we will describe the key features of the
partial differential equation governing the inviscid wave system. A discussion of the
numerical method used to solve the interaction equations follows in § 3, together
with a discussion of the results obtained in § 4. Finally, we end by drawing some
conclusions from this investigation.

2. Vortex–wave interactions in Couette flow
The starting point is the non-dimensional momentum and continuity equations for

an unsteady viscous fluid of constant density. Following the usual notation these may
be taken in the form as

ũt + ũ · ∇ũ = −∇p̃ +
1

R
∇2ũ, (2.1)

∇ · ũ = 0. (2.2)

Here p̃ is the kinematic pressure and R is a suitably scaled Reynolds number; for
example for Couette flow the Reynolds number is based on the maximum Couette
flow velocity and the channel half-height. We will be interested in the limit of this
parameter tending to infinity. If we are concerned with flow between parallel plates
moving in opposite directions then the above equations are to be solved subject to

ũ = (±1, 0, 0), y = ±1, (2.3)

so that Couette flow u =[y, 0, 0] is a possible solution. For channels of arbitrary
cross-section a unidirectional flow is still possible with u = u(y, z) and u satisfying the
no-slip condition at the boundary.

2.1. Vortex system

Equations (2.1)–(2.2) allow an exact Navier–Stokes solution of the form

ũ = [u(y, z, T ), v(y, z, T )/R, w(y, z, T )/R] , p = −Gx/R + p(y, z, T )/R2, (2.4)
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which has velocity field independent of x and where T = t/R is a slow diffusion time
chosen to balance convection and viscous diffusion. The constant term in the pressure
has been inserted to cover the case when the unidirectional base state is driven by
the motion of the walls and a pressure gradient. The relative scalings of the velocity
components are the usual ones for centrifugal instabilities in the small gap, or thin
boundary-layer limit, and were first identified by Taylor (1923). The equations of
motion then reduce to

uT + vuy + wuz = G + uyy + uzz, (2.5)

vT + vvy + wvz + py = vyy + vzz, (2.6)

wT + vwy + wwz + pz = wyy + wzz, (2.7)

vy + wz = 0, (2.8)

subject to the same boundary conditions. We see that the y and z momentum
equations (2.6) and (2.7) decouple from the streamwise momentum equation (2.5).
So if the y and z equations are solved for v, w then the x momentum equation can
be independently solved for the u component leading to the streaks. If curvature is
present and appropriately scaled then the above equations reduce to the full nonlinear
equations for Taylor vortices in the small gap limit when a term T0u

2 is inserted into
the y momentum equation. However, in the absence of any forcing we might expect
that the appropriate solution of the roll equations is simply v = w =p = 0 since the
effective Reynolds number is now unity and the unperturbed zero state is certainly
stable. Thus, we expect that in the absence of forcing, any perturbation of the
roll-streak flow away from Couette flow would ultimately decay to zero.

2.2. Wave system

Suppose that we now take the Reynolds number to be large and assume we have a
steady roll/streak flow described by the above equations and we superimpose on it a
wave periodic in the x direction with wavenumber α. The time scale for the evolution
of the streamwise vortex flow corresponds to T whereas an inviscid wave will evolve
on the faster time scale RT . Therefore, we look for a wave with instantaneous
frequency Ω =αRc(T ). The wave will be described by the inviscid analysis of streaks
given by Hall & Horseman (1991) and when the wave speed c(T ) is real, it will have
a critical layer y = f (z) where u = c.

Away from the critical layer we write

ũ = u(y, z, T ) + · · · + δR−1/3(ρ(T )U (y, z, T )E + c.c.) + · · ·, (2.9)

ṽ = R−1v(y, z, T ) + · · · + δR−1/3(ρ(T )V (y, z, T )E + c.c.) + · · ·, (2.10)

w̃ = R−1w(y, z, T ) + · · · + δR−1/3(ρ(T )W (y, z, T )E + c.c.) + · · ·, (2.11)

p̃ = −R−1Gx + R−2p(y, z, T ) + · · · + δR−1/3(ρ(T )P (y, z, T )E +c.c.) + · · ·, (2.12)

where c.c. denotes complex conjugate. In the above it has been assumed that,
since the wave depends on length scales of the same size in each direction, the
velocity components of the wave must be of similar magnitude, and ρ(T ) is the
slowly varying wave amplitude. The relative size of the pressure is then fixed from
the balance u(∂U/∂x) � (∂P/∂x) and the size of the wave δR−1/3 will be fixed
within the critical layer where it becomes O(δ). The quantity E appearing above is
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defined by

E = exp

(
iα

[
x − R

∫ T

c(T ) dT

])
. (2.13)

If we substitute the expansions (2.9)–(2.12) into the Navier–Stokes equations (2.1)
and (2.2) and look at the leading-order terms of order R−1 and R−2, independent
of E, we see that u, v, w, p satisfy (2.5)–(2.8). Similarly, the leading-order terms
of size δR−1/3 and proportional to ρE satisfy the inviscid linearized Navier–Stokes
equations:

iα(u − c)U + V uy + Wuz = −iαP, (2.14)

iα(u − c)V = −Py, (2.15)

iα(u − c)W = −Pz, (2.16)

iαU + Vy + Wz = 0. (2.17)

If we follow Hall & Horseman (1991) and eliminate U, V and W from the above
equations then we see that P satisfies

Pyy + Pzz − α2P − 2uyPy

u − c
− 2uzPz

u − c
= 0. (2.18)

This equation must be solved subject to the normal derivative of P vanishing at
any rigid boundary and periodicity in the spanwise direction. This equation is the
generalization into two dimensions of the pressure form of Rayleigh equation which
governs the linear instability of a unidirectional flow depending on a single variable.
No general results have yet been proved for this equation. We know from Hall &
Horseman (1991) and Li & Malik (1995) that, in the case when the downstream
velocity field corresponds to a Görtler vortex of spanwise wavelength Λ, both
synchronous and subharmonic eigenmodes with wavelengths Λ and 2Λ respectively
are possible, though invariably the synchronous modes are the most unstable. Of the
synchronous modes, the wavy one, sometimes referred to as sinuous mode, is usually
the most unstable and it is this mode that causes the onset of wavy vortices in the
Taylor vortex problem. For a given spanwise wavenumber α and streak velocity field
u(y, z, T ), we have an eigenvalue problem for the complex wave speed c(T ). We are
interested in equilibrium solutions where the waves do not grow (or decay) on the
RT timescale, and so we must stipulate that c is purely real. Note that if this is not
the case then the interaction of the waves we will consider shortly would cause the
vortex to grow (or decay) exponentially in time at twice the rate as the waves. For
a given streak velocity there will therefore be only a finite number of pairs (α, c(T ))
which are acceptable.

2.3. Interaction in the critical layer

If we prescribe the real wavenumber α, the streak velocity field must adjust as
T varies in order to make it possible to compute a corresponding real eigenvalue
c(T ). Furthermore, (2.14)–(2.17), or equivalently (2.18), will then have a critical layer
at y = f (z, T ), where the streak velocity satisfies u(y, z, T ) = c. In this layer viscous
effects smooth out any singularities and the layer is then of the usual thickness R−1/3.
Note however that it may be possible to use nonlinear effects to smooth out the
singularity but that needs a reconsideration of the size of the roll and might also be
the origin of the upper branch modes.

It follows from (2.14)–(2.16) that as the critical layer is approached, U, V, W all
behave like (y − f )−1. A further discussion of the critical layer can be found in
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Figure 1. (Colour online) Sketch of critical layer intersecting rolls. Note that the location of
layer varies with z and the Reynolds stresses associated with wave trapped in the critical layer
generate a mean motion leading to jumps in the roll normal shear and pressure across critical
layer with all other components of shear and velocity continuous.

Blackaby & Hall (1994) and Timoshin & Smith (1997) but the main point to note is
that as the critical layer is approached, P is regular and remains O(1). In different
situations it appears that there can be a logarithmic singularity at higher order in
the neutral case but, as pointed out by Timoshin & Smith (1997), the vortex–wave
interaction equations of Hall & Smith (1991) are independent of whether or not such
a singularity occurs at higher order.

In order to find a relatively straightforward derivation of the interaction equations
between the wave and vortex systems in the critical layer, we diverge from the
approach of Hall & Smith (1991) and use local coordinates (x, n, s) with n, s

measuring distance normal and tangential to the critical layer at a fixed x. At such
a fixed value of x, the wave leads to a time-periodic sloshing motion concentrated
within the critical layer which is centred on y = f (z); see figure 1.

The Reynolds stresses associated with this motion vary in s and so will produce a
steady streaming. It is this steady streaming which, in a rather novel way, produces
the forcing of the rolls needed to sustain the interaction between the waves and the
streamwise vortex. If we define a critical layer variable N = R1/3n, then with respect
to the x, N, s coordinate frame, the leading-order wave velocity in the critical layer is

ρδ(U(N, s, T ), R−1/3V(N, s, T ), W(N, s, T ))E + c.c., (2.19)

whilst the pressure is

ρδR−1/3P(N, s, T )E + c.c. (2.20)
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The wave amplitude ϕ is a function of T and remains arbitrary at this order since
(2.18) is linear. Note that δ, the wave amplitude in the critical layer, is still to be
determined. This is achieved by forcing the wave to drive a spanwise-periodic flow
matching onto the roll solution outside the critical layer. If we denote the component
of the roll velocity field (v, w) resolved in the s direction within the critical layer by
vs

i (N, s, T ) then the leading-order approximations to the s momentum equations is

1

R2
R2/3 ∂2vs

i

∂N2
= δ2ρ2(−iαUW + VWN + WWs) + c.c. + · · ·. (2.21)

Here an overline denotes ‘complex conjugate’. We recall that in steady streaming
problems where an oscillatory flow interacts with a boundary, the corresponding
equation when integrated shows that the streaming velocity, essentially vs

i , does not
decay to zero at infinity so an outer steady flow is generated. In the current problem,
because the Reynolds stresses are acting in an internal layer, the situation changes
slightly and integrating (2.21) once across the critical layer shows that the normal
derivative of the tangential component of the roll velocity, vs

i , across the critical layer
has a jump which must be accommodated by the roll velocity field in the bulk of the
flow.

Likewise, we write down the normal momentum equation as

1

R2
R1/3 ∂ps

∂N
= −δ2ρ2Λ0(s, T )WW + c.c. + · · ·, (2.22)

where Λ0(s, T ) is the local curvature of the critical layer and ps the roll pressure in
the critical layer parameterized in terms of arclength. If we integrate once across the
layer, we find that there is a jump in the pressure. Note that the direction of the jump
in pressure changes when the sign of the curvature of the critical layer changes.

Using the equation of continuity for the wave and noting that limN → ±∞ W =0,
it follows then that the normal derivative of the tangential component of the roll
velocity and pressure for the flow external to the critical layer must satisfy:[

∂vs
o(n, s, T )

∂n

]+

−
= 2δ2ρ2R5/3

∫ ∞

−∞

∂

∂s
|W(N, s, T )|2 dN, (2.23)

and

[p]+− = −2Λ0δ
2ρ2R5/3

∫ ∞

−∞
|W(N, s, T )|2 dN. (2.24)

Note that vs
o(n, s, T ) = es · [0, v(y, z, T ), w(y, z, T )] where es is a unit vector tangential

to the critical layer. Hence, we see that by choosing δ =R−5/6 the outer equations for
the roll velocity must be solved subject to a jump in the pressure and normal shear
across the critical layer y = f (z, T ). We therefore deduce that the Hall & Smith (1991)
theory leads to an asymptotic result which for Couette flow has the streak and roll
velocities scaling like R0, R−1 respectively, whilst the maximum size of the wave is
R−5/6 which occurs in the critical layer. Though this is reasonably close to the exponent
0.9 suggested by Wang et al. (2007), it turns out that the norm used by those authors
is a little special and that, when we use the corresponding norm in our approach, the
exponent increases to 11/12, in remarkable agreement with Wang et al. (2007).

The structure given above for the rolls, streaks and wave pressure field and jump
conditions applies to channels of arbitrary cross-section. Though in this paper we are
interested in Couette flow, the extension to more general cross-sections is achieved
by merely specifying the new boundary shape on which the no-slip condition is to
be applied. In particular, the structure applies to circular Poiseuille flow so that it is
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possible that many of the structures found in turbulent pipe flows owe their origins
to the vortex–wave interaction theory. If that is indeed the case, then the vortex–wave
interaction theory for inviscid waves holds the key to the understanding of one of
the fundamental structures of turbulent shear flows and it raises the possibility that
this knowledge might profitably be used to tune some turbulent flow properties such
as drag by the preferred excitation of particular vortex wavelengths; see also Wang
et al. (2007) for a discussion of this possibility.

The jump conditions (2.23) and (2.24) found above apply to vortex–wave
interactions in a channel of arbitrary cross-section and are simplified further by
writing down the form for W(n, s). From the momentum equation in the s direction
for the wave in the critical layer, it is found that at leading order W(n, s, T ) satisfies

∂2W(N, s, T )

∂N2
− iαµ(s, T )NW(N, s, T ) =

∂P(N, s, T )

∂s
, (2.25)

whilst the N-component momentum equation gives

∂P(N, s, T )

∂N
= 0. (2.26)

Here µ(s, T ) = (∂u/∂n)(f (s), z(s), T ) is the normal derivative of the streak u(y, z, T )
evaluated on the critical layer and therefore is a function of s, T only. The second
equation implies that the wave pressure in the critical layer is independent of N , and
therefore matching with the wave outside the critical layer we deduce that

P(N, s, T ) = P (y = f (z(s), T ), z(s), T ). (2.27)

The equation for W is to be solved such that it decays to zero at ±∞. The solution
of this equation can be expressed in terms of Scorer functions and, after some
manipulation, we find that

W = −(αµ)−2/3 ∂P(s, T )

∂s

∫ ∞

0

exp(−i(αµ)1/3(Nk − k3/3) dk. (2.28)

Using the above equations we can then show that the jump equations reduce to[
∂V s(n, s, T )

∂n

]+

−
= n0ρ

2α−5/3 ∂

∂s

(
µ−5/3

∣∣∣∣∂P
∂s

∣∣∣∣2
)

, (2.29)

and

[p]+− = −n0ρ
2(αµ)−5/3Λ0

∣∣∣∣∂P
∂s

∣∣∣∣2 , (2.30)

where n0 = 2π(2/3)2/3(−2/3). We are now in a position to summarize the effect of the
wave on the roll which we recall satisfies (2.6)–(2.8). Firstly, note that these equations
are to be solved subject to the no-slip conditions at any boundary. At the critical layer
y = f (z, T ), the velocity components v, w are continuous but the normal derivative of
the roll velocity tangential to the critical layer and the pressure must satisfy the jump
condition. The jump conditions are functions of the pressure eigenfunction P (y, z, T )
evaluated on the critical layer. Having determined the roll velocity, the streak velocity
follows from (2.5) which is to be solved subject to no slip at any boundary and with
u and its derivatives continuous across the critical layer. The pressure eigenfunction
P must then satisfy (2.18) and this equation then closes the system for the roll, streak
and wave velocity. At first sight the pressure equation looks linear but in fact u

depends on P through u, v so the equation is nonlinear. If we assume all quantities
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are known at an instant T then the equations must be stepped forward in time in
such a way that the new pressure satisfies (2.18) at the new time step and c(T ) must
remain real, this is achieved by suitably varying the amplitude function ρ(T ). We now
wish to apply this general formulation to Couette flow. For computational purposes
it is convenient to restate the jump conditions in Cartesian form. If we define

∆ = 1 + f 2
z , (2.31)

a = λα/∆, (2.32)

where λ= uy(f, z, T ), then the conditions become

[wy]
+
− =

[vy]
+
−

fz

= J (z, T ), (2.33)

J =
n0

a5/3∆5
ρ2

{(
−7∆z

2∆
− 5az

3a

) ∣∣∣∣∂P

∂z

∣∣∣∣2 +
∂

∂z

(∣∣∣∣∂P

∂z

∣∣∣∣2
)}

, (2.34)

[p]+− = K = − n0

a5/3∆5
ρ2fzz

∣∣∣∣∂P

∂z

∣∣∣∣2, (2.35)

where ± signs denote values evaluated above and below the critical layer and all z

derivatives are to be evaluated along the critical layer y = f (z), i.e.

∂

∂z

∣∣∣∣
y=f (z)

=
∂

∂z

∣∣∣∣
y

+ fz

∂

∂y

∣∣∣∣
z

. (2.36)

The above forms are the same as derived by Hall & Smith (1991) but we note that
the simplification of the current formulation was found by working with coordinates
along and normal to the critical layer. Finally, note that P in (2.29) and (2.30) is
simply P parameterized in terms of the arclength.

We are now in a position to summarize the interaction equations. Firstly, the vortex
and pressure fields u, p satisfy (2.5)–(2.8) and must be solved subject to periodicity in
the spanwise direction and the no-slip boundary conditions at any rigid boundary. In
addition, at the critical level y = f (z, T ), the velocity u is continuous whilst vy, wy, p

satisfy the jump conditions (2.33)–(2.35), and these jump conditions are a function of
the wave pressure, which satisfies (2.18), evaluated on the critical layer.

2.4. Comparison with the results of Wang et al. (2007)

We now demonstrate how the scaling results of Wang et al. (2007) for the wave part
of the velocity field can be obtained from the asymptotic structure given above. To
make this comparison, we must determine Mw , the maximum in y of the root mean
square (r.m.s.) in the spanwise direction of the spanwise component of the wave. The
key point here is that the wave is largest within the critical layer. In view of our
scalings above, the wave part of this quantity is of size R−7/6 outside the critical layer
and of size R−5/6 in the critical layer. At a fixed y we can compute the contributions
to the integral in the definition of the r.m.s. by evaluating the contributions within
and outside the critical layer. If the critical layer is not horizontal at the given value
of y, the contributions to the integral from outside and inside the critical layer give
terms of size R−7/3 and R−5/3R−1/3, respectively, so the dominant contribution comes
from the critical layer and the r.m.s. will be of size R−1. However, at a value of y

where fz = 0 the critical layer will extend a distance R−1/6 in the spanwise direction so
the contribution to the integral of the square of the modulus of the wave amplitude
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will now be like R−11/6 so that the maximum in the wall-normal direction of the r.m.s.
in z will occur where the critical layer is locally horizontal and will be of size R−11/12.

Thus, the maximum in y of the spanwise component of the wave will occur at
some value of the critical layer variable Y = R1/3(y − f ). At any value of Y , we can
write the spanwise component of the wave down using (2.28) and we then evaluate
numerically the value of Y where the maximum in Y of the r.m.s. in z of the spanwise
component of the wave velocity occurred. If we write

Φ0 =
21/4 |Pz|

a3/4Λ1/2∆2 |fzz|1/4
(2.37)

and evaluate this at a point where fz = 0, then we find that this maximum value
Mw is

Mw = 2.268ρΦ0R
−11/12. (2.38)

2.5. Regularization of the wave interactions on the roll velocity

In the next section, we will concentrate on finding equilibrium solutions of the
interaction equations and so we drop all the T dependence in the vortex momentum
equations and take

E = exp(iα[x − cRT ]). (2.39)

The major computational challenge is the solution of the y, z nonlinear momentum
equations (2.6) and (2.7) for the vortex. If we assume J and K are known then we
require the solution of the two-dimensional steady Navier–Stokes equations at unit
Reynolds number in the y,z plane subject to no slip at y = ±1 and periodicity in the
z direction. Of course, the periodicity is fixed by the forcing associated with the jump
conditions (2.33)–(2.35). In what follows we will solve these equations using a spectral
element discretization due to Karniadakis & Sherwin (2005). Rather than building
the jump conditions into the scheme, it is convenient to regularize the equations to
take care of the jump in a more conventional setting for this type of discretization.
In order to do so, we introduce forcing functions into the momentum equations such
that the equations of motion become

vvy + wvz = −py + vyy + vzz + F1, (2.40)

vwy + wwz = −pz + wyy + wzz + F2, (2.41)

vy + wz = 0. (2.42)

We then choose functions F1(y, z) and F2(y, z) to automatically enforce the required
jumps at the critical layer. Next, we suppose the forcing functions in (2.40) and (2.41)
take the form

F1 = f1(z)δ (u − c) , (2.43)

F2 = f2(z)δ (u − c) , (2.44)

where we have assumed that the wave speed is purely real. We first note that∫ f+

f−

F1(u − c) dy =

∫ f+

f−

1

λ
f1δ(u − c) du =

1

λ
f1, (2.45)

where we have used the previous definition λ= uy(f, z, T ). For quantities that jump
over the critical layer, the derivative normal to the critical layer is much larger than
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any derivative tangential to the layer. We can also argue that

∂

∂z

∣∣∣∣
y=f (z)

� −fz

∂

∂y

∣∣∣∣
z

(2.46)

so if we evaluate the y-integral of (2.40) across the critical layer and use (2.33), we
observe that

0 = −K + fzJ + f 3
z J +

1

λ
f1(z), (2.47)

and so

f1 = λ [K − ∆fzJ ] , (2.48)

where ∆ is defined in (2.31). Likewise, the z momentum equation (2.41) produces

0 = fzK + J + f 2
z J +

1

λ
f2(z), (2.49)

so that

f2 = −λ [fzK + ∆J ] . (2.50)

In other words, if the functions f1, f2 are chosen as indicated in expressions (2.48)
and (2.50), then the solution of the regularized equations will automatically produce
the required jumps at the interface and the delta function can then be defined in
terms of the limiting form of a smooth function. In our calculations we approximate
the Dirac delta function as

δ̃χ (ϕ) =
exp(−ϕ2/χ)

2
√

χπ
. (2.51)

We confine our calculations to the case of plane Couette flow so the pressure gradient
G is henceforth taken to be zero. In the absence of a wave or vortex, the basic
state, plane Couette flow, is antisymmetric about y =0, so there is no preferred
direction for a wave to move and we might expect a solution of the vortex–wave
interaction problem to exist with c =0. Of course solutions pairs propagating to the
right and left with equal and opposite wave speeds might exist but we do not look
for them here. Having regularized the two-dimensional Navier–Stokes equations, the
streamwise momentum equation can be solved with no discontinuities in u or its
first-order derivatives. Having found u, the eigenvalue problem associated with the
wave pressure equation can be solved. In the following section a detailed discussion
of the numerical scheme we adopt is provided but before doing so it is instructive to
make a few observations about the symmetries of the problem under consideration.
All of our calculations concern waves having the same spanwise periodicity as the
vortex state though it should be remembered that subharmonic modes are possible;
see Li & Malik (1995). The underlying vortex field has the symmetry

u(y, z) = −u(−y, z + Λ/2), (2.52)

v(y, z) = −v(−y, z + Λ/2), (2.53)

w(y, z) = w(−y, z + Λ/2), (2.54)

where Λ is the spanwise wavelength of the vortex field. This symmetry means that if
the wave equation when cr = 0 has a solution P (y, z) then we can choose the solution
such that for z � 0

P (y, z) = −P (−y, z + Λ/2). (2.55)
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Note that solutions not having this property can exist but we concentrate on solutions
having this property. In fact, if we choose the origin such that u is an even function
of z then the pressure field can be either odd or even in z but, as first found in Hall &
Horseman (1991), the odd mode seems the preferred one so that

P (y, z) = P (−y, −z + π/γ ). (2.56)

The equation for P is of course linear so the solution must be normalized, and so we
choose to normalize P such that √√√√∫

|P |2 dA

A
= 1. (2.57)

3. A numerical scheme for the solution of the interaction equations
We outline an iterative process to determine the solution of the interaction

equations. We start by giving a brief overview of our iterative scheme and subsequently
discuss each part of the iteration in more detail. We stress that our numerical
procedure is designed specifically to determine equilibrium solutions of the vortex–
wave interaction equations for Couette flow. Thus, our aim is to see whether the
asymptotic structure we have provided in § 2 captures the equilibrium lower branch
states of Wang et al. (2007) found from the full Navier–Stokes equations. Note once
again that the latter authors sought equilibrium solutions directly from the Navier–
Stokes equations and then studied their instability as a secondary instability problem.
They found that the lower branch states had a single unstable eigenvalue which
approached zero approximately like R−1/2. Since the time evolution appropriate to
vortex–wave interactions is on a longer O(R) time scale, it is not possible for our
formulation to capture the secondary instability; we discuss this point further in our
conclusions.

The first step is to be clear about exactly what is the nature of the nonlinear
eigenvalue problem for equilibrium vortex–wave states. Suppose that we fix the
spanwise wavenumber γ =2π/Λ of the roll-streak flow and α the wavenumber of the
inviscid wave system driving the rolls. The interaction equations we have formulated
might then be expected to have solutions for some values of the parameters ρ, cr

where c = cr + i0. However, because of the symmetry of our problem, a solution is
possible with cr = 0 so for each γ and α there will, in principle, be a corresponding
eigenvalue ρ = ρ(α, γ ). Our scheme to find this eigenvalue is based on guessing a
value for ρ(α, γ ) and finding the corresponding complex eigenvalue 0 + ici and then
varying ρ until we drive ci to zero.

Suppose then that at step k of our iteration procedure we have a streak velocity
field uk . Using this field we can find a solution of the pressure equation (2.18), and
we will obtain the corresponding pressure P k and eigenvalue 0 + ick

i . Having found
the pressure field, we can compute the regularized jump terms in the roll equations
and by marching them forward in time we compute the steady-state values of vk, wk .
The streak equation is then solved directly for the new streak velocity uk+1. The
procedure is then continued until convergence is achieved. More formally, then for
fixed α, γ = 2π/Λ, and ρ we undertake the following steps.

(i) Using uk(y, z) as a base flow, solve the pressure equation to obtain P k(y, z). In
fact, as we explain in more detail later, instead of solving the pressure equation we
solve the linearized Navier–Stokes equations governing the instability of the streak.
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These equations will contain a pseudo-Reynolds number R̃. In the limit when R̃ tends
to infinity, this pressure field becomes the required solution of (2.18). At this step we
also obtain the leading imaginary temporal eigenvalue 0 + ick

i .
(ii) Using uk and P k from step (i), normalized according to (2.57), evaluate the

regularized forcing

F̃ k
1 (z) = f1(u

k(z), P k(z))δ̃χ (uk), (3.1)

F̃ k
2 (z) = f2(u

k(z), P k(z))δ̃χ (uk). (3.2)

(iii) Now substitute for the regularized forcing from step (ii) into the roll equations
for vk, wk . In these equations we retain the time derivatives and obtain the steady-state
solutions by marching them forward in time.

(iv) Finally, using the roll solution vk, wk from step (iii), solve a steady-state
advection–diffusion system for the x-component streak momentum uk+1, as will be
detailed shortly (see (3.16)). At this point, the mesh can be restructured to align with
the new critical layer at u(y, z) = 0.

The symmetries of the interaction problem are numerically imposed on

F̃ k+1
1 (z), F̃ k+1

2 in step (iii) and the cycle is iterated until |ck
im − ck−1

im | <ε, where ε

is the tolerance. A series of iterations is then performed for a range of values of ρ

at fixed α, γ until we can determine the required value of ρ at the given values of
α, γ by interpolating the (ρ, ci) data to find the point at which ci =0. Alternatively,
at step (i) we have also investigated a sub-iteration to adjust α until ci � 0. This was
also implemented in conjunction with varying the value of ρ in step (iii) so that the
search was restricted to a fixed line in the (ρ, α) space. We observed that searching
along the line ρ2 = α5/3 + const or ρ = C1α + const (for 0.7 � C1 � 0.8) allowed us to
more efficiently obtain the equilibrium solution when α > 0.3. Finally, we note that

two numerical parameters are required in each iterative cycle, R̃ and χ , and we will
demonstrate the sensitivity to these parameters later.

We note that in step (iii) we solve a time-dependent two-dimensional Navier–Stokes
problem, whereas in step (iv) we solve the steady-state equation directly for the roll.
The solutions for u(y, z), v(y, z), w(y, z) obtained in steps (iii) and (iv) are therefore not
solutions of the unsteady Navier–Stokes problem which corresponds to the retention
of the time derivative in all three momentum equations. This approach therefore
has the benefit that our partly unsteady scheme is not capturing the time-dependent
evolution of an equilibrium state which based on the work of Waleffe (2003) appears
to be unstable and therefore could not be captured by marching the full unsteady
problem forward in time. Finally, we note that so long as the solution eventually
settles and becomes steady, we have an equilibrium state of the interaction equations
but the solution procedure along the way is not a solution of the full unsteady
problem which requires the time dependence in the streamwise momentum equation
to be enforced and ρ to be taken as a function of time in order to keep ci =0 as
required in the unsteady interaction equations. Also, we note that the steady-state
solution achieved is only acceptable in the derivation of the interaction equations if
ci = 0 and this is achieved by carrying out runs with different amplitudes ρ.

All of the steps in the iterative scheme are solved using a spectral/hp element
discretization; see Karniadakis & Sherwin (2005) for more details. This type
of discretization can use an elemental decomposition into either triangular or
quadrilateral subdomains as shown in figure 2(a). In this mesh, we have chosen
to capture the region around the critical layer u(f, z) = 0 within a quadrilateral layer

of elements to help resolve the steep regularized forcing F̃ k
1,2(z) which contains the
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Figure 2. Figure of computational domain: (a) elemental discretization of full equivalent
computational domain and an illustration of expansion modes used in each triangular region
for a fourth-order polynomial approximation; (b) half computational domain adopted in
simulations; (c) rotational quarter symmetry of computational domain.

approximation to a Dirac delta function. To ensure that the regularized forcing is
adequately captured, we can uniformly increase the resolution within each element by
increasing the polynomial approximation used within each subdomain as indicated
on the right of figure 2(a), where we observe the polynomial modes used within a
single triangular subdomain for a fourth-order approximation.

Finally, since the critical layer is not fixed in the z direction due to the periodicity of
the interaction problem, we ‘pin’ the location of the layer by solving in a half-domain
as indicated in figure 2(b) and imposing boundary conditions to be specified shortly.
In addition, we have also designed our half-mesh to have a further level of symmetry
about the quarter length in z as indicated in figure 2(c). This rotational similarity

of the quarter domain allows us to enforce the desired symmetries on F̃1,2(z) and
indirectly on the whole interaction problem. This enforcement of symmetry has been
numerically observed to be necessary to ensure we obtain eigenvalues c which have
zero real part. In the following, we discuss each of these iterative steps in more details.

3.1. Step (i): P from the linearized Navier–Stokes equations

Rather than solving the generalized inviscid Rayleigh equation (2.18) directly, we
obtain the wave solution P (y, z) exp(iαx) as the largest eigenvalue of the inverse of the
linearized Navier–Stokes equations about the base flow state u(y, z) = [u(y, z), 0, 0].

If the viscous terms in these linearized equations are neglected, we recover the
inviscid perturbation equations (2.14)–(2.18). The viscous equations are then solved at
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higher and higher values of the Reynolds number, R̃, until the results are independent
of the Reynolds number. Note that the solution of the pressure equation (2.18) given
by Hall & Horseman (1991) does not apply to the non-neutral case, and to extend
that approach we would have to make a detour in the integration path in the y

direction into the complex plane using the usual procedure. In order to do so, the
streak velocity would need to be extended into the complex plane which would be
computationally expensive, so we choose to calculate the pressure eigenfunction as the
limiting form of a high-Reynolds-number eigenvalue problem. To obtain the largest
eigenvalue of the inverse of the linearized Navier–Stokes problem, we use an Arnoldi
iteration where the inner iteration requires the inversion of the operator L(u) as

L
[

U

P

]
=

⎡⎣− 1

R̃
∇2 + u · ∇ + (∇u)T ∇

−∇ · 0

⎤⎦ [
U

P

]
(3.3)

subject to the boundary conditions. It would also be possible to solve this problem
in the full domain shown in figure 2(a) with periodic spanwise boundary conditions:

U (±1, z) = V (±1, z) = W (±1, z) = 0, (3.4)

U (y, 0) = V (y, 0) =
∂W

∂z
(y, 0) = 0, (3.5)

U (y, Λ/2) = V (y, Λ/2) =
∂W

∂z
(y, Λ/2) = 0. (3.6)

To discretize L we again apply the spectral hp element method this time with a
PN+1 − PN−1 domain deocomponsition technique as discussed by LeTallec & Patra
(1997) and Ainsworth & Sherwin (1999). We note that the pressure is normalized to
satisfy condition (2.57) and the value of the pseudo Reynolds number is taken to be

fixed value (typically R̃ = 1000) for α > 0.9 and R̃ = 1000/α for α < 0.9.
In earlier studies, we also solved this problem by obtaining the leading eigenvalue of

the linearized Navier–Stokes equations using a time-marching technique as the inner
part of the Arnoldi iteration (Tuckerman & Barkley 2000; Barkley, Blackburn &
Sherwin 2008). This approach gave consistent answers but required a significantly
longer time to obtain the relevant eigenvalue.

3.2. Step (ii): critical-layer forcing

In the next step we have to evaluate the regularized forces for the v, w momentum
equations, which are defined as

F̃1(y, z) = f1(z)δ̃χ (u) = λ [K − ∆fzJ ]
exp(−u2/χ)

√
πχ

, (3.7)

F̃2(y, z) = f2(z)δ̃χ (u) = −λ [fzK + ∆J ]
exp(−u2/χ)

√
πχ

, (3.8)

where ∆, a, J and K are as defined in (2.31)–(2.35) and λ= uy(f, z).
We note that u(y, z) and P (y, z) and their partial derivatives can be evaluated

everywhere in the y, z plane, although in the limit of χ → 0 only their values on
the interface are important. Note also that fz, fzz can be expressed in terms of first-
and second-order derivatives of u. We are now able to evaluate all terms arising in

f1(z) and f2(z) as functions of y–z and then multiply these functions by δ̃χ (u), which
restricts the forcing function to a region around the critical layer whose thickness is
dependent upon χ .
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3.3. Step (iii): v, w momentum equations

The third step in our iterative cycle involves the solution of the steady state v, w

vortex equations (2.6)–(2.8). However, to numerically handle the nonlinearity of the
vortex system, we march the y–z equations

vk
t + vvk

y + wvk
z + pk

y = vk
yy + vk

zz + F̃ k
1 , (3.9)

wk
t + vkwk

y + wkwk
z + pk

z = wk
yy + wk

zz + F̃ k
2 , (3.10)

vk
y + wk

z = 0, (3.11)

forward in time until an equilibrium state is achieved. At every time step, we impose
zero Dirichlet conditions on the upper and lower wall and symmetry conditions on
the two sides of the domains, i.e.

vk(±1, z) = wk(±1, z) = 0, (3.12)

vk
z (y, 0) = wk(y, 0) = 0, (3.13)

vk
z (y, Λ/2) = wk(y, Λ/2) = 0. (3.14)

For initial conditions we either impose the solution from the previous cycle vk−1, wk−1

or zero conditions on the first iteration k =0. This step requires the solution of a
two-dimensional forced Navier–Stokes problem which we time march using a second
order in time accurate velocity correction scheme (Karniadakis, Israeli & Orszag
1991; Guermond & Shen 2003) based upon a spectral/hp element discretization. We
recall that the above system has a unit Reynolds number. In our simulations we have
observed that this viscous damping appears to be sufficient to stabilize the flow to
reach a steady state.

3.4. Step (iv): u momentum equation

Having determined v(y, z) and w(y, z) we now solve the u momentum equation (2.5),
which is essentially a forced advection–diffusion problem. Since the underlying driving
component of u is Couette flow, we can decompose u into

uk(y, z) = y + u′(y, z), (3.15)

and recast (2.5) as

∂2u′

∂y2
+

∂2u′

∂z2
− v

∂u′

∂y
− w

∂u′

∂z
= v, (3.16)

subject to the boundary conditions

u′(±1, z) = 0, u′
z(y, 0) = 0, u′

z(y, Λ/2) = 0. (3.17)

Once again, this equation is approximated on the mesh shown in figure 2 using a
Galerkin projection with a spectral/hp element spatial discretization.

3.5. Numerical validation

Before discussing the results in the following section, it is worth considering some
validation of the numerical implementation and investigating the influence of the
parameters we have chosen. In undertaking our study we consider a spanwise
wavenumber of γ =2 as shown in figure 2, which was also adopted in the study
of Wang et al. (2007). Furthermore, unless stated otherwise in what follows, we fix
the regularization parameter χ = 1/1000 and the pseudo-Reynolds number in our

stability calculations to R̃ =1000.
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Figure 3. Comparison of the integral of (a) py , (b) pz (solid lines) over the critical layer
with jump conditions λK and λKfz, respectively (triangles).

Motivated by Waleffe (2003), we initiate our iteration with a two-dimensional
divergence-free body forcing term of the form

F̃1(y, z) = Cγ cos(πy) cos(γ z), (3.18)

F̃2(y, z) = Cπ sin(πy) sin(γ z), (3.19)

where C = 20. This artificial body force generates a roll solution and it can then
be substituted into the streak equation which is then solved. This streak velocity is
then used in step (i) of our procedure outlined above. However, note that having

determined this initial streak the artificial body force is switched off and F̃1(y, z),

F̃2(y, z) replaced by the jump forms of these quantities.

3.6. Enforcement of the regularized forcing

Starting with the streak computed as described above from the artificial forcing
given in (3.18) and (3.19), we undertake a single iteration through steps (i)–(iv) and

evaluate the regularized forcing F̃ 1
1 , F̃ 1

2 from (3.1) and (3.2). We then time march the
v, w momentum equations to a steady state using this updated regularized forcing
as discussed in step (iii). At this point, we can ask how well the jump conditions
(2.33) and (2.35) are enforced. All simulations were performed using eighth-order
polynomial expansions within every elemental domain.

In order to check that our regularization procedure is working, we numerically
evaluate the following integrals:∫ f +ε

f −ε

py dy =

∫
K δ̃χ (u) du =

∫ f +ε

f −ε

λK δ̃χ (u) dy, (3.20)∫ f +ε

f −ε

pz dy =

∫
K fz δ̃χ (u) du =

∫ f +ε

f −ε

λK fz δ̃χ (u) dy, (3.21)

across the critical layer. At every z location we numerically determine the critical
layer y = f (z) using a Newton iteration with a tolerance of 1 × 10−8. We then
integrate over the interval f − ε < y <f + ε, where ε = 0.05 using 31 Gauss–Lobatto–
Legendre integration points. We observe from figure 3 that the two integrals balance

relatively well for the finite approximation of the Dirac delta function using δ̃χ (u)
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a

R̃ αci

1000 3.42 × 10−2

2000 3.59 × 10−2

5000 3.67 × 10−2

10 000 3.69 × 10−2

b

χ αci

1/1000 3.42 × 10−2

1/2000 3.46 × 10−2

1/5000 3.49 × 10−2

Table 1. Variation of growth, αci , as a function of R̃ and χ for α = 1, γ = 1, ρ = 1.

with χ = 1/1000. A balance containing all terms in the v, w momentum equations
leads to an agreement to within the plotting error.

3.7. Sensitivity of the eigenvalue growth rate to R̃ and χ

We next investigate the sensitivity of growth rate αci with respect to χ and R̃.
We consider the case of α = 1, ρ = 1, γ =2 and obtain the variation in the leading
eigenvalue growth rate as shown in table 1. From this table we observe that the

variation of growth is less than 3 × 10−3 when varying R̃ from 1000 to 10 000 and is
less than 1 × 10−3 if we vary χ from 1/1000 to 1/5000.

4. Results
In the first instance, we will discuss the results obtained for the particular

configuration of Wang et al. (2007). As pointed out at the end of § 2 in Wang
et al. (2007), the authors plotted the maximum in the wall-normal direction of the
r.m.s. in the spanwise direction of the streak (with the contribution from Couette flow
subtracted out), the spanwise component of the wave, and the rolls. Results were also
given for higher harmonics but we do not calculate them in our theory.

Figure 4(a) shows a comparison of the corresponding quantities from our
calculations. The dotted lines denote the predictions from our theory with the
appropriate Reynolds number scalings applied. The agreement over a wide range
of Reynolds numbers is remarkable, so there seems little doubt that our theory is
describing the exact coherent structures found by Wang et al. (2007). In particular, the
spanwise component of the wave conforms well to the non-integer scaling of R−11/12

given by (2.38). Thus, exact coherent structures which are believed to have a strong
relationship with coherent structures observed in turbulent shear flows are produced
by an inviscid instability of a streak interacting with itself to drive a roll which
then modifies the original streak and so on. Figure 4(b) should be compared with
figure 2(g) of Wang et al. (2007). We observe that there is good agreement between the
asymptotic theory and the full numerical calculations of the latter authors. The vortex
wave approach to the identification of exact coherent structures has the advantage
that the Reynolds number is taken out of the problem and that solutions for a wide
parameter range can be readily computed. Now that we have convincing evidence that
vortex–wave interaction theory and the lower branch states are one and the same
thing, it is interesting to look at other parameter ranges and give results which would
be prohibitively expensive to compute directly from the Navier–Stokes equations.

Following the procedure outlined in § 3, we consider the results for the case with

γ = 2, where we have fixed χ =1/1000, and will define R̃ = 1000 shortly. In figure 5,
we plot the line of zero growth αci = 0 as a function ρ, α where we have considered
the range 0.1 � α < 1.5. For the given spanwise number, the plot therefore shows
the relationship between the wave amplitude and wavenumber needed to drive a
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Figure 4. (a) Comparison of amplitudes of direct numerical simulations of Wang et al. (2007)
(solid lines) with the current theory (dashed lines). The top almost coincident and horizontal
curves corresponds to the maximum in y of the r.m.s. in z of the streak velocity with Couette
flow subtracted out, i.e. u(y, z) − y. The curves labelled wave and roll correspond to the
same quantities evaluated for the spanwise wave velocity component and the roll velocity.
(b) Comparison with figure 2 (top) of Wang et al. (2007) at (α, γ ) = (1.213, 2), dotted lines
denote streak flow, solid and dashed lines denote positive and negative vertical roll velocity
and the bold solid curve highlights the critical layer.
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Figure 5. Data of ρ versus α at a zero growth rate is achieved in the nonlinear iterations of
§ 3. Also shown by a dashed line is the plot of ρ = Cα5/6, where the constant C is fixed by the
data at α = 0.05. Symbols correspond to different iteration strategies as detailed in the text.

streak neutrally stable to the wave. Interestingly, the solution approaches the origin
at small wavenumbers which means long-wave instabilities are possible and indeed
their asymptotic structure can be readily identified. Note, however, that at sufficiently
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small wavenumbers, viscous effects will contribute at leading order to the evolution
of the wave and the theory will fail when the wavenumber varies like some inverse
power of the Reynolds number.

To obtain the data in figure 5, we ran exploratory cycles, for different values of ρ

and a fixed value of α, of the steps outlined in § 3 until a fixed growth rate of the
maximum eigenvalue of the inverse linearized Navier–Stokes problem was achieved.
Having obtained values of ρ which span the region of neutral growth, we then
refined the value of ρ through interpolation until we obtained a growth rate where
α ci � 1 × 10−4. As discussed in § 3, we were then able to adopt a line search for other
neutral points where we perform a sub-iteration to find the value of α where the
growth rate is zero for a given critical layer. We have applied different line searches
as denoted by the different symbols in this plot. The filled triangles correspond to
searches along the lines ρ = kα5/6 (where k is a constant) with a psuedo-Reynolds
number of R̃ = 1000. The open squares correspond to searches along the lines ρ = kα5/6

but with a psuedo-Reynolds number of R̃ = 5000. We note that at higher α values
when the critical layer becomes steeper, the change in Reynolds number does have
a small effect on the neutral curve. The closed squares correspond to searches along
the lines ρ = 0.7α + k, and the closed circles correspond to searches along the lines
of ρ = 0.75α + k (where again k is a constant varied for each point in the neutral
curve). Both of these sets of points used a psuedo-Reynolds number of R̃ =1000/α.
Finally, the open circles correspond to a manual search at a fixed value of α and

a pseudo-Reynolds number of R̃ = 1000/α. For these last points, we were unable to
find an automated search.

In the inset of figure 5 we show an enlargement of the neutral curve around the
origin. In both plots we have indicated by a dashed line a fit of the form ρ =Cα5/6

where the constant was fixed by the computed values at α = 0.1. We observe that
for a wide range of the smaller values of the wavenumber, the data agree well with
this fit which is consistent with the scaling to make the value of the jump conditions
(2.34) and (2.35) finite as α → 0. Indeed, the small α asymptotic structure can be
readily identified by a consideration of the jump conditions (2.29) and (2.30), where
we see that the balance ρ = Cα5/6 at small wavenumbers keeps the right-hand sides
O(1) so that the roll driven by the jump conditions remains O(1). Hence, in the
small wavenumber limit, the roll and streak equations remain the same but the jump
conditions have the combination ρ2α−5/3 combined into a single O(1) parameter.
Finally, the pressure equation is then to be solved with the wavenumber α set equal
to zero. Thus, in the limit of zero wavenumber, the streak does not collapse back
into Couette flow. We stress here that the ρ = Cα5/6 balance at small wavenumbers
gives us the long wavelength limit of the interaction problem within the vortex–wave
framework. When the wavenumber reaches some inverse power of the Reynolds
number, viscous effects will come back into play and modify the small wavenumber
structure. That calculation is beyond the scope of the present work. However, it is
because of this effect that when we perform calculations at smaller and smaller values
of α we must increase the pseudo-Reynolds number in order to capture the inviscid
structure.

It turns out that there are different possibilities which exist for higher α that
can be inferred from an asymptotic study of the interaction equations. Firstly, if a
solution exists for large α, then the vertical concentration of the wave must shrink
to a thickness 1/α in which case we can show that ρ = C2α

11/6 + · · · . An obvious
alternative scenario is for the solutions to have the wavenumber approaching a finite
value with the wave amplitude tending to infinity. Finally, it could well be that the



200 P. Hall and S. Sherwin

(a)

z

y

–1.5 –1.0 –0.5 0 0.5
z

0

α = 1.40

α = 0.10
α = 0.28
α = 0.47

0.42

0.40

0.38

0 0.10 0.20

α = 1.35
α = 1.21
α = 0.98
α = 0.10

0.5 1.51.01.0 1.5
–1.0

–0.5

0

0.5

1.0 (b)
0.5

0

–0.5

Figure 6. (a) Equispaced contours of u(y, z) at α = 0.47, γ =2 and ρ =
√

0.161. The solid line
highlights the location of the critical layer u(y, z) = 0. (b) Variation of the critical layer location
in half the spanwise domain for γ =2, α = 0.1, 0.98, 1.21, 1.35 and 1.4. The inset shows the
variation of the upper part of the critical layer at α = 0.1, 0.28 and 0.47.

curve simply turns round and then enters the origin, though extensive searches near
the origin only found a single branch of solutions. However, the results shown in
figure 5 suggest that the wave amplitude goes to infinity as α approaches a finite
value. Our calculations did not converge for values of the wavenumeber higher than
those shown and we found no trace of a second branch of solutions shown above but
we cannot be sure that the curve does not turn round.

In figure 6(a) we plot the values of the streak contours u(y, z) for the case
α = 0.47, γ = 2, ρ =

√
0.161, where the growth rate was αci = − 4.67 × 10−5. The solid

line in this plot indicates the critical layer where u(y, z) = 0 and all other contours are
plotted at equispaced levels of 0.1. The deformation of the streamlines is typical of
streaks associated with centrifugal instabilities, though the self-interaction of the wave
is driving the vortex field. Once again, the contours shown agree well with results
given by Wang et al. (2007). The shape of the contours does not vary significantly as
the wavenumber is varied.

In figure 6(b) we highlight the variation of the critical layer in the region 0 � z � π/2
for α = 0.1, 0.98, 1.21, 1.35 and 1.4 at the neutral condition of zero growth where the
corresponding values of ρ are given in figure 5. The inset indicates an enlargement
of the interface variation for 0 � z � 0.15, where we have also indicated the location
of the critical layer at α =0.1, 0.28 and 0.47. We observe that for lower values
of α < 0.5 the interface is relatively constant. As we increase α further the interface
appears to approach a limiting configuration. This suggests that the right-hand branch
corresponds to a vertical asymptote rather than the other possibilities discussed earlier.

Figure 7 shows a variety of features of the wave solution. In this figure, we
see the same results for three different neutral points corresponding to α = 0.2,

γ =2, ρ =
√

0.035438 (figure 7a,b), α = 0.8, γ =2, ρ =
√

0.4405 (figure 7c,d ) and

α = 1.4, γ = 2, ρ =
√

3.1537, R̃ = 1000 (figure 7e, f ). In each of these series of plots we
observe isocontours of the axial (figure 7a,b) and the spanwise (figure 7e, f ) compo-
nents of the wave velocity. Also indicated at the ends of the isocontours are the roll
velocity and the critical layers. The other two-dimensional isocontours in each series
of data are the real and imaginary components of the perturbation pressure of the
wave P (y, z) normalized according to conditions (2.56) and (2.57). We observe that for
the range of α we have considered, the wave pressure shows relatively little variation.
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Figure 7. (Colour online) Wave field at three different axial wavelengths: α = 0.2 (a,b), α = 0.8
(c,d) and α = 1.4 (e, f ). The first column of images show the axial (a,b) and spanwise (e, f ) wave
components as isocontours (levels are at half the maximum and minimum values). The ends
of these three-dimensional isocontours show the roll velocity and the critical layer by a solid
bold line. The second and third columns of images show the real and imaginary perturbation
pressure P fields. For the real fields, contours are plotted at equispaced levels of 0.2 intervals
between 0 and 2. For the imaginary component, contours are plotted at equispaced levels of
0.1 intervals between −0.5 and 0.5. Dotted lines indicate negative contours. Pressure field is
normalized according to conditions (2.56) and (2.57).
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Figure 8. Variation of the mean wall shear rate ūy|w as a function of α evaluated for the
values of ρ leading to c = 0. The different symbols correspond to the search method adopted
in obtaining data of figure 5.

Finally, in figure 8 we show the variation of the mean shear rate on the upper wall

ūy |
y=1 =

1

Λ

∫ Λ/2

−Λ/2

∂u

∂y
(1, z) dz. (4.1)

The shear rate determines the skin friction drag which will be induced by the streak
system and is therefore of potential interest. We observe that for low values of α

the non-dimensionalized shear rate has a minimum as α approaches 0. This figure
is of considerable interest because there has been speculation that the lower branch
states might be used as drag reduction devices by finding a control strategy to keep a
turbulent flow close to these states. Hence, if that could be achieved at the optimum
wavenumber shown, then the drag is about 25 % higher than the drag for Couette flow
but much lower than the corresponding turbulent drag. The fact that the minimum
drag occurs in the long wavelength limit is important and points to the importance
of viscous effects which will come into play as the wavenumber decreases. In fact,
it appears that the crucial limit is when αR is O(1), in which case the wave evolves
on the long length scale appropriate to the streak and in fact there is no decoupling
between wave and vortex. This will be discussed subsequently.

Now let us now draw some conclusions from our work. We have shown that
the lower branch states identified in Couette flow by a number of authors are
closely related to vortex–wave interactions. The vortex–wave interaction theory
is a high Reynolds theory whereas the lower branch states calculated by other
authors correspond to numerical solutions of the full Navier–Stokes equations. The
agreement we have found between the two approaches is excellent over a wide
range of Reynolds numbers, and since the vortex–wave interaction theory reduces
the computational problem from a three-dimensional Navier–Stokes problem to a
two-dimensional steady Navier–Stokes problem, albeit with jump conditions to be
imposed, coupled to a partial differential equation eigenvalue problem the vortex–
wave approach might sensibly be used to generate solutions over a wide range of
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parameters. Our formulation goes readily over to more general shear flows such as
combined Couette–Poiseuille flow in a channel or Poiseuille flow in a pipe so the
vortex–wave approach can be used for a variety of shear flows.

The relationship between self-sustained processes and vortex–wave interaction
theories is in our opinion now clear. The vortex–wave interaction theories developed
in a number of papers by Hall, Smith and coworkers provided a high Reynolds
description of how finite amplitude wave systems which exist as instabilities of
streaks can drive rolls that themselves drive the streaks. The mechanism is precisely
the same as that subsequently used to describe self-sustained processes at finite
Reynolds numbers. Here we have found that the lower branch Couette flow structures
found by numerical solution of the Navier–Stokes equation are virtually identical to
the vortex–wave interaction theory applied to inviscid waves over a wide range of
Reynolds numbers. However, the self-sustained process approach has yielded upper
branch solutions not described here, and it remains to be seen whether any of the
other variants of vortex–wave interaction theory will lead to an asymptotic description
of the upper branch modes. The key part of the interaction in both approaches is the
process by which the waves feed energy back into the rolls. The alternative description
of this provided in this paper is essentially a steady streaming approach and clearly
reveals the details of this process. The first point to note is that the waves are inviscid
and instantaneously neutral so that they will have a critical layer where the wave speed
coincides with the streak velocity. In this layer the waves increase in amplitude and
propagate predominantly in a thin viscous critical layer which is curved in the
spanwise direction. The Reynolds stresses driven by the waves in this layer generate a
mean normal pressure gradient and streaming velocity independent of time and the
downstream variable. These lead to jumps in the normal derivative of roll velocity
along the critical layer and the roll pressure. These effects drive the rolls and make
the whole process sustainable.

One aspect of the lower branch states we have not addressed is their stability.
Wang et al. (2007) numerically investigated the stability of these states and found
that there was a single unstable eigenvalue which at large Reynolds numbers
decayed approximately like R−1/2. This was done by perturbing the Navier–Stokes
equations about the lower branch solutions and solving numerically the resulting
partial differential equation eigenvalue problem. This leads to one unstable eigenvalue
with the Reynolds number dependence indicated above. A stability analysis of the
equilibrium vortex–wave interaction equations is beyond the scope of this paper but
some observations can be made.

Within our unsteady formulation of the vortex–wave interaction, the natural time
scale for an instability of the combined wave–vortex state is R−1. Therefore, if we
perturb our equilibrium states within the framework of the unsteady interaction
equations, then a linear instability analysis could be performed but the growth or
decay rates of any disturbances are necessarily going to be of size R−1 so they could
not describe the mode found by Wang et al. (2007). However, in different shear flows
such modes might be unstable and play a role in the instability of lower branch
modes. Therefore, the mode found by Wang et al. (2007) cannot be captured within
the present framework. Professor Waleffe has kindly indicated that in his simulations
of the instability the wave decays rapidly to zero, leaving a more slowly decaying
streamwise vortex. Thus, the instability found by Wang et al. (2007) may well be
a more rapidly growing secondary instability of the wave which leaves the vortex
essentially undisturbed. If that is the case, the key would be to look for a more
general critical layer structure allowing for the evolution of a wave on a faster time
scale. This possibility is yet to be explored.
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